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Stability properties of hydromagnetic waves (shear and compressional Alfven waves) in spatially 
homogeneous plasma are investigated when the equilibrium particle velocity distributions in both 
parallel and perpendicular directions (in reference to the ambient magnetic field) are modeled by 
kappa distributions. Analysis is presented for the limiting cases l&J^l and |£„| > 1 for which 
solutions of the dispersion relations are analytically tractable. Here £„(a=e,i) is the ratio of the 
wave phase speed and the electron (ion) thermal speed. Both low and high f3 (=plasma pressure/ 
magnetic pressure) plasmas are considered. The distinguishing features of the hydromagnetic waves 
in kappa distribution plasma are (1) both Landau damping and transit-time damping rates are larger 
than those in Maxwellian plasma because of the enhanced high-energy tail of the kappa distribution 
and (2) density and temperature perturbations in response to the electromagnetic perturbations are 
different from those in Maxwellian plasma when |£„| <g 1. Moreover, frequency of the oscillatory 
stable modes (e.g.. kinetic shear Alfven wave) and excitation condition of the nonoscillatory (zero 
frequency) unstable modes (e.g., mirror instability) in kappa distribution plasma are also different 
from those in Maxwellian plasma. Quantitative estimates of the differences depend on the specific 
choice of the kappa distribution. For simplicity of notations, same spectral indices /cy and K have 
been assumed for both electron and ion population. However, the analysis can be easily generalized 
to allow for different values of the spectral indices for the two charged populations. 
[DOI; 10.1063/1.3132629] 

I. INTRODUCTION 

Low frequency (lower than the ion cyclotron frequency) 
and long perpendicular wavelength (longer than the ion gy- 
roradius) electromagnetic waves, often referred to as hydro- 
magnetic waves, are often observed and/or invoked to ex- 
plain the phenomena in both space and laboratory plasmas. 
These waves and their stability properties in Maxwellian 
plasma have been investigated quite extensively for many 
years by many authors and a good discussion on them can be 
found in the plasma textbook by Stix. In collisionless 
plasma, however, particle velocity distributions can often de- 
part from being Maxwellian. For example, in naturally oc- 
curring plasma such as plasma in the planetary magneto- 
spheres and in the solar wind, the particle velocity 
distributions are observed to have non-Maxwellian (power- 
law), high-energy tail. The distribution function that can 
better model such particle velocity distributions is 
known as the generalized Lorentzian or the kappa 
distribution with functional dependence of the form fo(v) 
~[l-^-l;2/(/c02)]~(,c+1,. For finite values of the spectral index 
K, the kappa distribution has power-law tail at velocities 
larger than the thermal velocity 0, and it approaches a Max- 
wellian distribution [~exp(-v2/02)] in the limit as *•—>=<:. 
Typical values of K for space plasmas are in the range of 
2-6. In the last several years, many authors have studied 
electrostatic and electromagnetic waves in spatially homoge- 
neous plasma using different types of kappa distributions for 
the equilibrium state. ~ In a recent paper, we studied low 
frequency (lower than the ion cyclotron frequency) and long 
perpendicular wavelength (longer than the ion gyroradius) 
electrostatic   waves   in   spatially   inhomogeneous,   current- 

carrying, anisotropic plasma, where the equilibrium particle 
velocity distributions were modeled by different kappa dis- 
tributions. In the present paper, we investigate the stability 
properties of the hydromagnetic waves in spatially homoge- 
neous plasma, where the equilibrium particle velocity distri- 
butions in both parallel and perpendicular directions with 
respect to the ambient magnetic field are modeled by kappa 
distributions. 

The paper is organized in the following way. In Sec. II, 
we describe the general mathematical formalism leading to 
the derivation of the dispersion relations for hydromagnetic 
waves in kappa distribution plasma. In Sec. III. we analyze 
the dispersion relation in various limits and describe the sta- 
bility properties of the well-known hydromagnetic waves. 
Both low-/? (/3<? 1) (/3=plasma pressure/magnetic pressure) 
and high-/? (/3> 1) plasmas are considered. In Sec. IV, we 
discuss the distinguishing features of the hydromagnetic 
waves in kappa distribution plasma and offer some physical 
interpretations. 

II. MATHEMATICAL FORMALISM 

We adopt a Cartesian coordinate system whose z-axis is 
along the ambient uniform magnetic field B0 and consider 
small amplitude electromagnetic perturbations represented 

by {E,B)exp{-ia>t+ik y + iknz) with kn>0 and kx >0. Elec- 
tromagnetic modes in plasma can be described in terms of 

any three of the six field variables (E,B) by eliminating the 

other three with the help of kx E=(w/«)B and k-B=0. The 
three field variables that we consider to be physically most 

meaningful for hydromagnetic waves are E„ Bx, and Bz. The 
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magnitude of E, is a measure of the non-MHD (magnetohy- 

drodynamic) character of the waves and Bz corresponds to 
the compressional component of the magnetic perturbation, 
which characterizes waves in finite-/? plasma. Since w^ck 
for hydromagnetic waves, where k2=kn+k", the displace- 
ment current can be neglected and, consequently, Vj = 0 
(implying quasineutrality) can be assumed. The three equa- 

tions that determine Ez, Bx, and B. are then the quasineutral- 
ity condition 

<7«"« = 2 q« I dvfa = 0 

and the perpendicular (to B0) components of Ampere's law 
given by 

B, = ~ 
Atrik i _ 

cr "Jx - 
4mk | ^,      f 

d\vj„. (2) 

4m~ 4m^-,      f 
Bx=-—jy

m-—2j<1a\ d\vj„. (3) 
c*ll "^1    a J 

Here qn is the charge and nn is the perturbed density of the 
charged particle species a(=e,/'), andy are the components of 
the perturbed current density. The perturbed quantities are 
calculated from the perturbed particle distribution function 

fa
mfa0i,v,(o), as shown in Eqs. (l)-(3). 

We refer to a cylindrical coordinate system in velocity 
space with its z-axis parallel to B0. so that vx=vA cos <p, vy 

=v± sin <p, and vz = v-B0/B0=vh where <p is the azimuth 
angle. The equilibrium distribution function fM, which can 
be constructed from the constants of motion {vx and vu) of 
the charged particle species a, is taken to be described by the 
product bi-Lorentzian-typc kappa distribution function such 

2.16 as 

TT  ^,^11^11    n KH +1/2) \ K10
L„1 

2      \-(K1 + 1) 

X    1 + 
v 2      \-(K||+l) 

KA 
(4) 

The function faoivy^^) is normalized to the equilibrium 
(unperturbed) particle density nQ, while 0nil and 0nl are the 
parallel and perpendicular thermal speeds, respectively. The 
parallel and perpendicular pressures in the equilibrium state 
PM\ 

and Pai ^e 

( ' ) Pa\\ = "O^ll = ma      dwlfaQ =     ~ " 
J \ 2 if I, - 

j-m^i £,. (5) 

Pai ~ n0Ta± = -ma\ d\v\fM=[ ^   _ j j-mnno0
2
al (6) 

for ifN> 1/2 and K > 1. Here TM and Tal are the parallel 
and perpendicular effective particle temperatures, respec- 
tively. Two other parameters related to pM and pnl which 
naturally occur in the study of electromagnetic waves are 

y8„n-87rp„n/^=[2if||/(2if,rl)](47rma«o^il/^o) and (in: 
= %TTPnl/B

2
0=[K, I(Ks -))](4Trmano02

ai/B
2

0). 
In our choice of the equilibrium distribution function we 

have allowed the possibility of different values of the spec- 
tral index in parallel and perpendicular directions. In fact, it 
may be reasonably argued that ifj >#cj because of some 
equilibration and isotropization in the perpendicular plane 
while preferential acceleration along the ambient magnetic 
field. Realistically, the spectral indices would also be differ- 
ent for the electron and the ion populations. But, for simplic- 
ity of notations, we have assumed same spectral indices for 
both the populations. However, the analysis presented in this 
section and in Sees. Ill and IV can be easily generalized to 
allow for different values of the spectral indices for the two 
populations. 

Solving the linearized Vlasov equation by standard pro- 
cedure (integration along the unperturbed particle orbits in 
the ambient magnetic field B0), we first obtain 

/„(k,v,a>) = - 
q„   y   ,„+| exp(- />„ cos ip + imp) I 

mJCHn= 

X k\\~ + 
2
(
W

-VII)T^ (ton dv x , 

EJ„(fi,M *y— - 2n(la—j   + 
Wy dv L ' 

iii2„ ~       k« v |   , 
—^Jn(nJBx + i^^J'n(nJBz 
ck , *i c 

(7) 

where {la=q„B0/{m„c), Jn(p-n) is the Bessel function of the first kind, and the prime notation on J„ denotes its first derivative 

with respect to the argument fj.n=kLv x /iln. As mentioned earlier, Ex, £v, and BY have been eliminated in favor of Ez, Bx, and 

Bz. Using the identity 

exp(- ifia cos <p) = X (- 0%(/t„)exp(- ip<p) 
p=-oc 

(8) 

in Eq. (7) and carrying out the <p-integrations we then obtain 
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r d<t>f„ = - —r 2J 

3 d 

EJi\L—-2nCln 
dv» 

f/a0(ui,i;|| 

" 1..2 (9D1/     [ C& 

wfi„ i -       k» v 

*i e 

(9) 

r r , 7      27T<7a v    1 
</<P cos cf>/„ = —- 2J —;——n 

mnk„ „__„ (i)-k„v» + nil •n^ll n=-» 
EJJ'A kn— - 2nVta—Y | 

t>V\\ ftv 

ni1„      ,~       k« v      , -,- 

ck , A: i   <r 

kf— + 2(<o-*||i;||)—7 f/n0(Vl.U||), (10) 

r27r    .   .   2^tt v        i       »na 
d<P sin <p/„= — 2J  "—~~TT\  

J0 mjcn n=_x(o-kl]vn + nilakiv1 flv„ '«,   2 

nCllt ,~        L v ,       ,- 

r9 (9 
fa— + 2(&> — *nti|i)-rT" 

<?i>n <9lT 
f/no(^2i.f||). (ID 

which are relevant for the calculation of nn, jx, and jy. However, for the description of the low frequency and long parallel 
wavelength modes [(co,^^)<?!!„] considered here, Eqs. (9)-(ll) can be simplified by taking (a>-fai;|| + rtfl„)~' 
= (nCla)~][\ -((o-knV^/nil,,] for «#0 in the sum and using the identities 2,„±oJl=\-J0, 1ni:0J„J'n = -JoJ0, 1,ni,0nJ''n-0, 
1,n^0Jn/n = 0, 2„*o/„J'n/n = 0, and 2.„±0{J'n)

2/n = 0. Keeping only the leading order nonzero terms in Eqs. (9)-(l 1), we then find 

f Jo 
d<pfn -• 

277'<y„J = 2(l-75)-y- 
c)V1 

7° 1 * 
tO-faUy     (?D|| 

X *l|— + 
.    ^11 

d 
2(«t»— /C||t7M)—— |/ao(«'i.l'll). 

f i     A fi>  _L • *« v      •/»/o    5 (1 - J0) + / e. 
ck±      k    c a>-fai>n 

(12) 

1 
2» 7     2TT9J    _^_     B, .*,W±- 

^<P cos <p/„ = -) — - —  7^0 + i- B- 
m„ktl I \w-K||ii||     ckLl kL  c o - fau„ 

2(J\)2- 
• k«v« 

n 

X 
a a 

fa— + 2(fc)-*Bi>|,)—— /«O(W'L.UH (13) 

r277 -   277-/ n„ 
dip sin <p/„=—-  

Jo fa   MJ 

c -     w-k^BA 2     . fa fl- 
— c. 1-JnI ~ IV   JrJn  
B0  

l        kA      B0I
K •  ^V, fi0 

d d 
k\\— + 2(w-^n)7T /ootwl.wi).      (14) 

The expressions for n„,jv, andy\ evaluated from Eqs. (12)-(14) provide adequate description of hydromagnetic waves in both 
low-yS (fK 1) and high-/S (B> 1) plasmas including finite gyroradius effects. 

The expressions for nn, jx, and jy that are obtained from Eqs. (12)-(14) (see Appendix A for some details) are 

liqa 

"o     mji\\0-n. 
A](baK)+A2(baK)-%-Z'K(£a) E--A\(b WJaK> 

ckx 

-B,   + A^bnK) -A4(baK)—f-ZK{£„) 
Bj 

Bo' 
(15) 

oi 
A3(baK) - A4{bnK)jjyZ'K(£a 

c ~     v w Bx 
—Ez-z, Wi^Wrr 
"0 a kW °0 

-il 
n, 

qa"r 
^ ll t/•( -t,2^ 

n2" + 2/-i n""j '4'(/'-) + lSL/4^-)- 20L 
B_ 

Bo' 
(16) 
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7,-2 A\(bnK)E:-i2,- —1 ZZiAAt>nK) + ——1 

k2& 

a  "nK h y n„ 2(1 „ L 

\-A2(bnK) + 
2*n    0J» 

2*1-1 ei 
-A,(ba 

Bo 

•sr\ 0) B- 
+ Z,qanoA)(bnK) — -f. (17) 

Here, £,= a>/(*,0aii).        Z^fc)=«£,(&)/«/&,        K 
= k\&al/(2{l2

a), and the A} are defined by 

r . d i 
Jo <9u^(l +D>I^i)"

J 

= -|l-~ L
T^I^K-      «I>1, 

4*i- 

6Ti J0 (1 +U1//fit^1)   1 

-fc„„ + 
Kx-1   "    4(/C1-1)(K1-2) 

KX >2, 

4n„ r .2  1   f 

(18) 

(19) 

*L> 1, (20) 
3     KL 

-~ —br 
1KX-\ 

A^baK) = *!«!- r;—~j~ZTV\ 

*i-i 

3      K 

2 K, -2 
*i >2, 

-   1 
3K, 

*I-1 
—baK ,    «•_!>!, 

(21; 

^.s(*«) = 3- ^jUiUl)        2 2   J +1 
Cl Jo ^i(l +fJ/fi^L)1 

(22) 

>M*<«) = ^r| <foj»i,.    2,—^ ,K + 

2*1 
{K1-\)(Ki-2)\      2^-3 

-baK\b„K,    KX >3 

(25) 

for £„„.< 1 (see Appendix A for the evaluation of the inte- 
grals). In the limit as /c—>=c, baK^>k2Ta l{m„£l2a) = bn, 
which is a notation that is commonly used in the study of 
Maxwellian plasma, and Aj go over to the corresponding 
expressions for Maxwellian distribution. For example, in the 
limit as *,.-+«>, Ax(baK)^-[\-lQ(ba)t\p(-b„)] and 
A2(baK)—>/0(b„)exp(-fc„), where /0 is the modified Bessel 
function. The function ZK(£,a) is the plasma dispersion func- 
tion when the parallel velocity distribution is given by Eq. 
(4) and is defined by !(> 

_      rUn+1)      p 
Wfc)-^*   ,/2r(     +1/2)J_oe 

ds 

(*-£,)(!+s2/*ll)<*»+,>' 

Im L > 0 (26) 

and by the analytic continuation of Eq. (26) for Im ^a<0. 
This is similar to Z^(£) of Summers and Thorne.' The series 
and the asymptotic expansions of ZK for integer values of /Cy 

16 are 

l--^£+-- 

2*,,+ l 
-u 1 

2/f„ + 3 
£+-.    \ti<L    (27) 

1 - 
3* 

/Cj - 1 \       (Cj - 2 
b„J,     f , > 2. 

*± - 1 \       2 *± -2 

(23) 

?(0 • -3-      dviv\(Ji)2—Y- ——-,   « +1 

2/c,   /3   K, \ 
1- ^„* k„-     *i>2,      (24) 

Z,(U 
/ \ 77/( K-„)        _    1 

(l+£/*„)"«+l       L 

1 : 

1 + 
2*11- u; 

? + •••. 

(28) 

where/(/C||) = F(/C||+l)/[/C||' r(«j|+1/2)]. For noninteger (in- 
cluding half-integer) values of Kg, the asymptotic expansion 
has correction terms,1 which add small corrections to the 
real frequency of the excited waves. We ignore such correc- 
tions in the present analysis. The linear dispersion relation is 
obtained by substituting Eqs. (15)—(17) into Eqs. (l)-(3) and 

demanding nontrivial solutions of £,, Bx, and B-. 
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III. ANALYSIS OF HYDROMAGNETIC WAVES 

A. Shear Alfven waves 

In the study of shear Alfven waves, compressional com- 

ponent of the magnetic perturbation (S,) may be ignored, 

while the magnetic field line bending represented by Bx is 
more important. This simplifies the analysis considerably. 
We assume bllK = 0 but retain finite ion gyroradius (bJK< 1) 
effects. After substituting the appropriate expressions for na 

and y\ into Eqs. (1) and (3), we obtain 

z'MJ + 
2me(TA 

m$i 
Ax(biK)+A2(biK)^Z'Md E, 

Im.&M 

*$± ck± 
A\(biK)Bx, (29) 

AAbiK)  co' 

b,„   klV; 
2+SibiK,P) 

~     At(bJ cock , - 
[Sx = 2    2     '' 

(30) 

where 

8(b,K,(3)=]-(f3e.-f3el])+
]- 

Ax(biK) „ 
+ —; An 

*, -\\\-A2(b,K) 
ftj 

(3i; 

Here electron terms that are of the order of melm, in com- 
parison with the ion terms have been neglected. Also, we 
have used the definitions of biK and V/^ = BQ/(47rm,n0). where 
VA is the Alfven speed. By combining Eq. (29) with Eq. (30) 
we then obtain the kinetic dispersion relation for shear Al- 
fven waves, which can be written as 

AAb.J  co2 

"it     'Ml VA 

K(Q + ^A2(bIK)Z'KUl) 
m,(r„ 

meAx(b^k\^ 

m,    b,K n, f[\+g(biK,p)] = 0. (32) 

We now solve Eq. (32) for different limiting values of |£j. 
For convenience, we shall use the following definitions in 
our presentation: 

UO=W("l|)[("ll+lV*l|]^     lf„l«i. (33) 

UU = v^/(fn)[(fii + i )/«J&/( i + &*iP+2-   \U > • • 
(34) 

First, we consider |£,|?>1 and |£,|§>1, i.e., diVl,6eVt 

<u)lk\\ (cold electrons and cold ions). Referring to Eq. (28), 
we realize that the term {mel m^&^l 02^A2(biK)Z'K{t;i) in Eq. 
(32) may be neglected in comparison with Z'K{^e) as melmi 

<\ and |£,|§>!£.! typically. Using the leading terms in the 
asymptotic expansion of Z'K(t;t), we then find 

A\(bIK)   co1 

+ g{b,K./3) [\-2iLK(£e)£] 

A | (biK) c2k,   w2 

<*pe Kn 
?[\+g(biirp)] = 0. (35) 

where to-Atre2^! me. Without the imaginary term that ac- 
counts for wave-particle interaction. Eq. (35) yields 

l+«U>,v/B) 

$VA A\(biK \+(c2k2
l/w

2
pe)[\+g(b,K,fS)] 

(36) 

Since   \^„\~VA/0M>\   requires  [(2K„- 1 )/2K^\fia<me/m, 
<\, [(2K||- l)/2/f||]y8,1|

<^ 1   and since we can assume (3a 

~ fiaw for typical plasma, the dispersion relation (36) is valid 
for low-/?(/?<§ 1) plasma. For such plasma we may take g 
< 1. Then, Eq. (36) becomes 

I 

k2V2 K
\l v A A](biK)\+(c2k-/co 

(37) 
pel 

When K±—•», Eq. (37) becomes identical to the dispersion 
relation for the inertial shear Alfven wave that was derived 
earlier for Maxwellian plasma. So, Eq. (37) is the dis- 
persion relation for inertial shear Alfven wave in kappa dis- 
tribution plasma. The inertial shear Alfven wave has been 
suggested ' as a mechanism for particle acceleration just 
above the auroral ionosphere where the plasma is cold 
enough so that /3en<me/mj. We may note that without the 
(c2k\lco2) term, the dispersion relation follows directly 

from Eq. (30) if we set £, equal to zero (MHD limit). The 

(c2k I co ) term arises from the non-MHD feature (£-=£()) 
and denotes the kinetic modification due to finite electron 
skin depth (clcope). It may also be verified that blK 

<^c2k±/cOpe for the low-/? plasma defined above. Since 
A\lbIK = -\ and {\-A2)lb,K 

(37) further reduces to 

..2 1 

i/Cj /(*•; - 1) when biK^ 1, Eq. 

k2V2 K
\l VA \+(c%lu>pe) 

(38) 

which is identical to the dispersion relation for Maxwellian 
plasma. " This is expected because under the conditions 
|£„|§> 1, b„K = 0 and with the omission of the wave-particle 
interaction, details of the velocity distribution do not matter 
and so whether the distribution is kappa or Maxwellian is 
unimportant. With the inclusion of the imaginary term. 
which is small compared to unity, the approximate dispersion 
relation for low-/? plasma with bJK~0 is 

I 

W I + c2k2 /tot 
/"• 

2r 
2i 2 i    2 c k . lioni,   ~ , 

1 + c kj /< /" 
(39) 

It exhibits electron Landau damping of the inertia! shear 
Alfven wave in kappa distribution plasma. 

Second, we consider |£,|?>1 and l&l^l, i.e., 0m<tw/k[t 

<§ 0e]] (hot electrons and cold ions). For simplicity of presen- 
tation we ignore the terms proportional to Z'K{^). This elimi- 
nates the ion sound mode, which is of no interest here. Using 
the leading terms of the series expansion for Z^(£(,) in Eq. 
(32) we then find 
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AAbiK) co2 

2/c,|- \A\(biK)i2 

2«i+ 1    b, 

2 K 

2 *,, + 1 

k\P%\+g{biK,f3)] = 0. (40) 

Here pv=f,/(l, and Cj=pe||/(/n,rt0) = [*i|/(2*i|- \)](me/mi)d
2

ell 

= Tell/mr Without the imaginary term, Eq. (40) yields 

k2V2 

2*„-1 

Ai(biK)    2*|,+1 
|2    2 
* 1 Pv [\+g(blK,/3)].     (41) 

The condition |fj~ VV^u^ 1 requires [(2*y- l)/2K|]/8(n 
>melmi and, as before, [(2AC„ — l)/2/C||]/3,u<^ 1. Because of 
these conditions we may neglect /3,N and /3i± (considering 
Pix ~ Pa in typical plasma) in g and rewrite Eq. (41) as 

k2V2 
"ll v A 

2*„-1 
• + 2 _2 

^i(*,-J     2/C||+l 

* 

fclP + 2<Ai-Ai) 

l + 
3 + 23-l_7k 

x 

/cI - 1 \4     2*„ + 1 7, 

i + -(A±-ft (42) 

A i (bjj  a) 
1+-       —T-^+g{bIK,(i) 

Xi 1 + 
A2(AJ 2*n+1 

2*n    ^I^I(*,- 

//; X r 
'"^ 

JMfcJ+^M^fi) 

[1+*(ft,>/3)] = 0. 
2*„+1 ^;A2(ft, 

Without the imaginary term. Eq. (45) yields 

2*n    ^\\A^b,K) 

(45) 

*„v^    /t,(fc,g 2*ll+10?1/i2(Z>J [l+«(t«]. 

(46) 

The dispersion relation (46) is valid for [(2*y-l)/2*n]/3(,y 
<melmj and [(2*n~ 1 )/2/C|,]/3lM§> 1. If we further use the 
small-/?,,, expansion of A] and A2, then Eq. (46) becomes 

(O 

kM "ll vA 

1 + 
3 + 2*£1lik 

x 

*j.-i\4   2*n+1 r,±/ '" 

> + j(Ai-A) (47) 

In the last step of Eq. (42) we have used the small-b,K ex- 
pansion of A\{biK) [refer to Eq. (18)] and the relation k\p2 

= [*I/(*1-l)](r<,ll/7,1)^. 
If K/m,)[2*ll/(2*„-l)]«^ll<«l and fltX~fiH<l, 

then Eq. (42) describes the kinetic shear Alfven wave in 
low-/3 kappa distribution plasma consisting of hot electrons 
and cold ions. Unlike the ideal MHD shear Alfven wave, the 
kinetic shear Alfven wave has £,(=£0) associated with it and 
incorporates finite ion gyroradius effect. In the limit as 
KJ.ICJL —>x, we recover the dispersion relation for the kinetic 
Alfven wave in Maxwellian plasma,' ' which has been in- 
voked for plasma heating" and for auroral particle 
acceleration. With the imaginary term in Eq. (40) included, 
the approximate dispersion relation is 

k2V2 K
\\ VA AdbL 

2*n-1 
2*,, + 1 

2 „2 
klPl 

2*ii 

2K,, + 1 
(43) 

It describes electron Landau damping of the kinetic Alfven 
wave in low-/S kappa distribution plasma. 

For high-/3f (/3,,> 1) plasma, on the other hand, Eq. (42) 
describes nonoscillatory, purely growing modes when 

&u-ftj >2. (44) 

The instability condition is the same as that for the fire-hose 
(garden-hose) instability " in Maxwellian plasma with an- 
isotropic electron pressures (Pe\\>/3el). The growth rate of 
the instability is different for kappa distribution plasma if the 
finite ion gyroradius effect is retained. 

Next, we consider the reverse situation 1^,1^ 1, |£,|S> 1, 
i.e., Og^io/k^O^ (cold electrons and hot ions). Using the 
series expansion of Z'K(^) and the asymptotic expansion of 
Z'K(£;e) and keeping only the leading terms in Eq. (32), we 
find 

Comparison with Eq. (42) indicates that the role of the elec- 
tron temperatures is now played by the ion temperatures. 
When /3,||-/3(i <2, Eq. (47) describes another type of kinetic 
shear Alfven wave in kappa distribution plasma consisting of 
cold electrons and hot ions. On the other hand, if /3,u-/8(J 

>2, Eq. (47) describes nonoscillatory, purely growing 
modes, which are driven unstable by the ion pressure aniso- 

2S—27 tropy. This is similar to the fire-hose instability ' condition 
[Eq. (44)]. The imaginary term in Eq. (45) represents the 
Landau damping (both electron and ion) of the modes. 

Finally, we consider |£,|<§1 and |£,,|<?1, i.e., 6j\\,6e]] 

>w/kl{ (hot electrons and hot ions). Using the leading terms 
of the series expansion forZ^(£0) in Eq. (32), we obtain the 
dispersion relation 

.A 
k2V2 

"vy,   . 2*, 
1 + rA7 + I 

mi°i\\ 

+ ^4u2- 
in <?„ 

2*n+ 1 

2*, 

mtf\\ 

2*„+l Of 
rA 

2*ii 
+ /- 

2*„+ 1 LMe) + 
"I <K 

;0i 
A2LM.) 

When biK< 1. Eq. (48) reduces to 

I 

k2V2 I +-(y8. -A) 

'(\+g) = 0.     (48) 

(49) 

where /3,=2„/3„; and (3u = l,n/3all. The dispersion relation 
(49) applies to high-fi plasma since |£„|~ VAI0M<^ 1 re- 
quires [(2*n-l)/2*n]^>me/m( and [(2*,,- l)/2*„]/3,1|> 1. 
It indicates instability due to pressure anisotropy when 
P\\~Pi >2. The instability condition is similar to Eq. (44) 
except that both electron and ion pressures play roles. 
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B. Compressional Alfven waves 

For the compressional Alfven waves, we may neglect Bx 

in comparison with Bz, which simplifies the analysis. We also 
consider long perpendicular wavelength modes (baK<\). 
Keeping the leading terms in A](baK) -A^(b„K) and substitut- 

ing the resulting expressions for nn and jx into Eqs. (1) and 
(2), we find 

z'Me) + -^fz'Mi) 
m,0f„ liwm 

ieE. 

,-k\\VM 

2^„   " 2%   K 
Bo' 

(50) 

,-^+2^?(^-^) 

+ 7^2/^ 
k   „ 

1 + -^^t) B 

.k\    *i    y 4irg„n0 &a±   ,       ~ 

2*2Kx-lf   k,B0    fi 
(51) 

a\ 

where electron terms that are of the order of mt,/mi in com- 
parison with the ion terms have been neglected and k\ps 

<§ 1 has been assumed. It is important to note that Eqs. (50) 
and (51) are valid for /cB> 1/2 and K± >2. As before, we 
study the stability properties of the modes for different lim- 
iting values of |£a|. 

First,   we   consider   l^l^l   and   I^J^v 0/ii > 0fii 
<§a>//cn (cold electrons and cold ions). Using the asymptotic 
expansions of Z'K(^a), keeping only the leading terms by not- 
ing that melmi

<^ 1 and l&l^l&l typically, and then combin- 
ing Eqs. (50) and (51) we derive the dispersion relation 

,,2 

I 
k2V] 2k 

*ll *i     tfel k\ 

•K 
m, k] k\v\ 

4m„k2   w2 

2f,|- 1 K± -2 ff,, k 
?Mfc) = o. (52) 

A possible root of the quartic equation, which is consistent 
with |£,| §>I, is obtained when B^inijl mL){k\lAk2) 
X(k2V\/to2) term in the equation can be neglected. This, in 

essence, amounts to neglecting the term associated with E, 
on the right-hand side of Eq. (51) and the condition for it is 
B2 <(me/mi)[k*f(k2k2

L)]. When the condition is satisfied, 
the dispersion relation is 

k2 k2 

. j-1 ii   _ n\ —!L j_ a  - 
1,2 

or k„ k 

- r A a 

2 if H- 1 /fj. -2 ff|, k 
•%Mfc)*o. (53) 

which describes the damped compressional Alfven mode in 
kappa distribution plasma including finite pressure effects. In 
the cold plasma limit (0n]], 0a —>0), it reduces to w=kVA. 
The real part of Eq. (53) is the same as that in Maxwellian 
plasma.   The imaginary term represents electron transit-time 

damping (magnetic analogue of Landau damping) in kappa 
distribution plasma. 

In the parameter regimes 1^,1^1 and |&|<1, i.e., 0iU 

•^lo/k^d^ (hot electrons and cold ions), using the leading 
terms of the appropriate expansions in Eqs. (50) and (51). 
and neglecting k^B^/ar compared to terms of the order of 
unity or larger, we find 

2*II- 1 k2r; 

2*n + 1   a,2 

« &., 

2*ii 
+ v 

2if„+ 1 

2 K 

Pill 

ieE. 

+ r 
2*n- 1 ffii [        2K„+ 1 

B, 
X—, 

Bo 

'-^ + ^-« 

Pe     Pill 

(54) 

k2 P 
if., - 1 2if|,+ Iff;, 

*j - 22#cn- 1 ff,y 

*i -1 2*n    k\ 

*1 -22 *ll - 1 k2 

-ff A 2*n+1 
[    2if|, 

x- ieE- 

Bl B2 ~ 

Pell Pill 

ff. ft,. 

in xA (55) 

By neglecting the imaginary terms in Eqs. (54) and (55), we 
obtain the dispersion relation 

2*n-' V; 
2 ifii + 1 or l-S3 + >i-« /t'VI     2* 

k2\Pl    KI-22K,-\ ff„, 

*x 2*n+ip;1_ 

2*22/f„-lff,| 

(56) 

When k2/k2<£2/Bn and ff > 1, one of the roots of Eq. (56) 
corresponds to the "slow" magnetosonic mode with a>' 
~[(2if||- l)/(2if||-i- l)]^cj\ and the root is approximately 
given by 

72~~2 1+Pl- 
pii *i 2ifn+i 

2ffii*,.-2 2if||- 1 

2 if »- 
\+Bi- 

fii *J I2M+1 

2*II+ 1 V ffn *j -22#fn- I 

The mode becomes unstable if the inequality 

if,-2 < 2tt||+l   ff,    ffx  <2U,-2) 

1 2K,-\ 1+ff  ff,„ 

(57) 

(58) 

is satisfied. The other root corresponds to the "fast" magne- 
tosonic mode w~kVA and is approximately given by 
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k2v] l+fii- 
& 2K„ + 

Wei 2 2/c, - l 

The instability condition for this mode is 

2*||+l     Al      0,1   ^   2(KL-2) 
2/c,|- 1 1 + fiL An KX 

(59) 

(60) 

In the limit as K^.K L —•», instability conditions (58) and (60) 
reduce to the ones that were found for Maxwellian plasma, 
and the instabilities were referred to as the field-swelling 
instabilities."' For some finite values of KJ|(>1/2) and 
K1(>2), the range of values of Ai for instability, as defined 
by inequality (58), can be much narrower and the threshold 
value of/3,,1(>)8t,||) for instability, as suggested by inequality 
(60), can be much lower than those for Maxwellian plasma. 
In the case of weak pressure anisotropy so that the plasma is 
near marginal stability, the imaginary terms in Eqs. (54) and 
(55), which take into account Landau damping and transit- 
time damping by electrons and ions, should be retained in the 
analysis. 

Next, we consider the reverse situation, i.e., |£,|<§1, 
|fj >\ (cold electrons and hot ions), and assume that 0,, 
= 0. In this case, Eq. (50) yields 

ieE. 2#Cn+ 1 w„ w2  B,      B. 

m fa&n     Ki~l    2K
\\   

mi^Bo     Bo 
(61 

Therefore, we may set the right-hand side of Eq. (51) 
equal to zero. Moreover, we observe that u)2/(k2VA) 
<{kllk2){^IV2

A) = [(2K,-\)l2K^(kllk2)Pa as |fe|<l. Then 
the dispersion relation that follows from Eq. (51) is 

k2 k2 

\+~(fiil-fiin) + ^fil, 

X   1- 
1    2K,   AI 

K, -2 2K,|- 1 An L    2K, 

2K„+1 
+ iLMil 0. 

(62) 

Here we have used 02
1 /0J]]=[(K1 - \)/K1 ][2KH/(2K||- 1)] 

X(^(1 / fig). Referring to the definition of £„(£•) we solve Eq. 
(62) for w and find 

gjlgiii 
w = — i—F=" 

/c.-2 2/cn-l fin k2 

2Vir/(K||)Kj 1    K„+l   fi}tk\ 

I  + Ax-Ai 

+ TjU+A, 
«i - ' 2«ii+ i 0,J 

.-22K|-1 AII 

Instability (Im w>0) occurs when 

k](     fiq-fiAklf Kl-]2Kll+\fi
2

L 
, 2 1  ' + T / +   , 2 \  ' + Pi L k" K 2 2K„ AI 

(63) 

<0. 

(64) 

For nearly parallel propagation (kl]/kl > 1), the instability 
condition becomes AII

_
0;L ->2, which is same as the condi- 

tion   for  the   fire-hose   (garden-hose)   instability   of  shear 

Alfven wave due to ion pressure anisotropy [see Eq. (47) and 
the discussion following it] and which is the same for both 
kappa and Maxwellian plasmas. On the other hand, for 
nearly perpendicular propagation {kulkl <§ 1), the instability 
condition is 

A I K ,   - 2 2 KM -  1 
— >^ • (1+A 
An       *±-l 2K,+ 1 

(65) 

which is the condition for the mirror instability in kappa 
distribution plasma. In the limit as K||,Kj —•<», we recover 
the instability condition for the mirror instability in Max- 
wellian plasma." For some finite values of K||(>l/2) and 
KX(>2), the factor on the right-hand side of Eq. (65) can be 
significantly smaller than unity and thus the threshold value 
of AI^AII f°r mirror instability can be significantly lower in 
kappa distribution plasma. 

Finally, we consider |f,|-^l and |fe|^l, i.e., 0^,0^ 
>w/kn (hot electrons and hot ions). If the imaginary terms in 
the series expansion of Z'K(^n) are not included in Eqs. (50) 
and (51). we have 

me(fel ieE. 

eL/mJcA    2(K;-1)\<£.      d/B. 
&.i    efAS 

(66) 

1 - 2+zh(Pi-p\) 
klV\    2k 

+ 7J-2A,, 
kr „ 

1 - 
2K, +1 a2 

2    2K„     (L 

B^ 

2K||+ 1 fc] 4ven0( Oji 

1    2K k2  kuB
2 E„ (67) 

vll"0    x  "ell 

respectively. For the convenient case of 02
ll0

2
e^62

ll9
2

a so 

that £_ = 0, the dispersion relation that follows from Eq. (67) 

k2V2
A 

I + ^-A) 

+ ^2A,I(I- 
K, -12K||+1 fi„, 

KX -2 2KN- 1 fiM 

(68) 

when 0^/0^1 is related to fini I fiM. The instability condi- 
tion can be written as 

-,\ 1 + 
0i-0i 

4 k2 1+S0„ 
Kj -12K„+ \fiai 

Kj.-22K||-  1   Aril 
<0. 

(69) 

This is similar to Eq. (64) and so the discussion following 
Eq. (64) applies, except that in this case both the hot elec- 
trons and the hot ions participate in the instability process. In 
particular, for nearly perpendicular propagation (kilki

<^\) 
and for fie± I AH=0, L10* the instability condition is 
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B.•,       K | - 2 2 K« - I 

An       fi-l 2/o,|+ I 
(70) 

where /31 =2„/?fti. The instability condition (70) is evidently 
different from the corresponding condition for Maxwellian 
plasma, which is obtained from Eq. (70) by taking the limits 
K|i,#Cj —>°°. When the imaginary term in the series expansion 
of Z'(^a) is included, the dispersion relation is modified as 

k    „ 

(71) 

x, ~\2K,+ \Ba, .   2K, 
1 + n TMfJ 

2 2#cn — 1 BM 2K„ + 1 

and it takes into account the electron and the ion transit-time 
damping. 

For all the cases considered above, the Landau damping 
and the transit-time damping rates of the hydromagnetic 
waves in kappa distribution plasma can be significantly dif- 
ferent from those in Maxwellian plasma depending on the 
allowed values of #CM(> 1/2) and K,(>2). Further discussion 
on it is presented in Sec. IV. 

IV. DISCUSSION AND PHYSICAL INTERPRETATION 

We have classified the hydromagnetic waves and their 
stability properties in kappa distribution plasma according to 
the relative magnitudes of the wave phase speed and the 
electron and ion thermal speeds (|£j and |£,|) and considered 
only the limiting cases for which solutions of the appropriate 
dispersion relations are analytically tractable. Such analytical 
approach is obviously limited in scope and applicability; but 
it helps to understand the important basic features of the 
waves. A more rigorous analysis requires numerical solution 
of the dispersion relations. Conclusions reached here for a 
specific choice of the kappa distribution function would re- 
main qualitatively unchanged for other possible choices of 
the kappa distribution. ' 

The well-known results for the hydromagnetic waves in 
Maxwellian plasma are easily recovered from the results re- 
ported here by taking the limits K^,KL —»». The comparison 
shows important differences between the kappa distribution 
plasma and the Maxwellian plasma. First, the magnitude of 
the resonant wave-particle interaction in the suprathermal re- 
gion of the velocity space (v\\ = wlk\\t> 0all) is considerably 
larger in kappa distribution plasma than in Maxwellian 
plasma. This is evident from Fig. 1 where the behavior of 
-Im Z' as a function of |<JJ/(A.||0||)| is shown for two types of 
velocity distribution. The reason for the marked difference in 
the magnitudes of-Im Z' (which is proportional to flf^l th)\\ 
at v\\ = wlk^ when |a»/(^n^|)|> 1 is that the slope of the kappa 
distribution in i>rspace decreases according to a power law, 
whereas the slope decreases exponentially in the case of the 
Maxwellian distribution. Hence, both the Landau damping 
and the transit-time damping (magnetic analogue of Landau 
damping) of the waves are enhanced and, consequently, the 
threshold values for the excitation of unstable hydromagnetic 
waves in kappa distribution plasma are increased. Other un- 

to 

10 

to 

10 

10 

-2    Z. 

FIG 1. Comparison of -Im Z' vs jr. where .v = |b>/(tll^l)|. Solid curve is for 
Maxwellian distribution Dashed curves with decreasing lengths of segments 
are for kappa distributions with «n = 2, 4, and 6, respectively. 

portant differences are the following. In the parameter re- 
gimes \£,\> 1 and |£j<? L (1) the frequency of the oscillatory 
stable mode (e.g., kinetic shear Alfven wave) in kappa dis- 
tribution plasma is different from that in Maxwellian plasma 
[see Eq. (42)] and (2) the instability conditions for the 
nonoscillatory, purely growing compressional modes, which 
are excited due to pressure anisotropy, are different from 
those in Maxwellian plasma [see Eqs. (58) and (60)]. The 
condition for the mirror instability, which is excited in the 
parameter regimes |£,|<§ 1 and |£,|> 1, is also different [see 
Eq. (65)]. The differences can be attributed to the fact that 
the density and temperature perturbations of the charged par- 
ticle species a in kappa distribution plasma are different 
from those in Maxwellian plasma when |£„|<^ 1. This inter- 
esting aspect is discussed below. 

When baK~0 and |£„|<^1, neglecting the imaginary 
term and keeping the leading term in the rest of the series 
expansion of Z'K(^n) in Eq. (15), we find 

'<?, 2 KM +  1 

"(I kiii „w 2/fu 
•E, +   1 - 

2K«+ 1 T„ 

2K„- I T. „w 
zr (72) 

after relating (FM and &~n to TM and Ta . This is evidently 
different from the corresponding expression for Maxwellian 
plasma, which is given by the #c(, —>3C limit of Eq. (72). Simi- 
larly, by calculating the perturbed parallel pressure plM from 
Eq. (12) we find 

Pat 

Pa\\ *!|7d| 
£.+ 

B0' 
(73) 

which is clearly the same for both kappa and Maxwellian 
plasmas. That pn\\l p„\\ should be the same for any choice of 
equilibrium distribution is easily understood if we recognize 
that it also follows from the parallel (to B()) component of the 
linearized momentum balance equation 28.24 

0 = - /A||/>„|| + qnn0Ez + ikt]{pnll - p„ {)(BJB{)). (74) 

Equation (74) is derived from the linearized Vlasov equation 
by taking the appropriate velocity moment and by neglecting 
the inertia term for the considered low frequency waves. We 
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then notice from Eqs. (72) and (73) that p;„N/pn]]±nalnQ. 

This suggests a nonzero temperature perturbation  Tnll  in 
kappa distribution plasma given by 

all 

2K„- 1 \ k,J. 
+ 

-.11 T(A\ Bo 
(75) 

In contrast, pMl' p„\\ = n„ln0 and, hence, TM = 0 in Maxwellian 
28 29 

plasma under the same low frequency conditions.        That 

r„n=0 in Maxwellian plasma also follows from Eq. (75) by 
taking the limit Mj—>^. 

We next discuss pailpal, which plays role in determin- 
ing the excitation conditions of the field swelling and mirror 
instabilities [see Eqs. (60) and (65)]. Calculating pnl/pni 

from Eq. (12) and keeping the leading order terms when 
|£a|<^l and baK = 0, we find 

iq„ 2/f||+ 1 - 
E- + 2 

Pal 

Pal *l|7"«l|2ff| 

Subtracting nn/n0 we also find 

KL-\2Kll+\Tal\Bz 

Ki -22*11- I Tea I Bo 

Tal 
1- 

«i    2K,| + 1 Ta 

•, - 2 2 Mi - 1 T„ Bo' 

(76) 

(77) 

,28.29 The corresponding expressions for Maxwellian plasma 
are obtained by taking the K^,KL —*<*> limits, and the differ- 
ences between the kappa distribution plasma and the Max- 
wellian plasma are evident. Quantitative estimates of the dif- 
ferences depend on the specific values of K||(>)/2) and 

«i(>2). 
In Appendix B, we present a more convenient form of 

the perturbed distribution function /„ that may be used in- 
stead of Eq. (12) to obtain nn, pM, and pnl given by Eqs. 
(72), (73), and (76). 
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APPENDIX A: DERIVATION OF EQS. (15)-(17) 

In obtaining na, jx, and j. from Eqs. (12)-(14), we need 
to evaluate a set of integrals in (vn,v±) space. When Eq. (4) 
is used for fM, the needed integrals in v\\ space are 

r dv\v\g o0 and £' <fou fig* 

(D-k„Vu r)v„ 
(Al 

where 1 = 0,2 and ^IIMW/UII^,)]'^
1
'- Other 

integrals in i>N space are either zero due to symmetry or can 
be reduced to the first integral after partial integrations. The 
first integral is evaluated with the change in integration vari- 
able as 

_, v2() ^,r[(/+i)/2]r[MJ-(/-i)/2] 
r(M,+ i) 

(A2) 

for «-||>(/-l)/2, where in the last step we have used the 
standard integral 

r  ,      f~] Y(a)Y(b) 

Jo 
dr. 

(1 + t)"+h     P(a + b) 
(Rea>0.  Re b>0).     (A3) 

The second integral after partial integration and change in 
integration variable is 

J -X 

dV\\       dgqQ 

w-Lv« dv« 
-k — (+ 

f)(i>J_0 

dv» 
HaO 

(W-*||U||) 

rx        ds 
WMH. )(1 +S2/Kv)

K»+], 

(A4) 

where ^n=o}/(kn0all). It is related to Z'K(^J = dZK(^n)/d^„, 
where Z„(£„) is defined by Eq. (26). The needed integrals in 
v i space are 

f* 2 f* 2  '"'oO 
dv^vJohao, dv^td -J0)—— , 

Jo Jo dvl 

a0 

(A5) 

f *             2        I f *             2         I '"'nt 
du | Vj Vo^oO. ^ 1 U'l VoTT 

Jo Jo                    ^i 

dv {v^(J'0)
2hM, dv±v{(Jo)2~Y, 

J0 Jo                    dv± 

dv i^UJ)2/!^,, duiwiUi^-rf5- 
Jo Jo                     <?i>± 

where /^(i;2 ) = [1 + i;2 /(K^ )]-<*>+1). When the series 
expansions of 70 

ar|d J\ are uscd an(J tne leading few terms 
are kept, the above integrals are of the form f^dv 1 v^ [ 1 
+ V{/(K10

1
,J]-

U
-

+P
\ where /=1,3.5,... and p=l,2. It is 

evaluated by changing the integration variable and then us- 
ing the standard integral [Eq. (A3)] and is given by 

f 
Jo 

p) 

= (K1/2^1)
,+lr[(/+i)/2] 

xr[Mj +p-u+ i)/2]/[2r(#fj +P)] (A6) 

for KL >[(/+ \)/2]-p. Evaluating the leading terms of the 
integrals in Eq. (A5) using Eq. (A6), we obtain the A; given 

by Eqs. (18)—(25). The expressions for na, jx, and L given by 
Eqs. (15)-(17) are obtained when the above results are used. 
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APPENDIX B: A MORE CONVENIENT FORM OF fa 

WHEN baK~0 AND ^/(f^^l 

Here we construct the portion of the perturbed distribu- 

tion function/,, that is most relevant to the calculation of «„, 
pM, and pal when bltl<~0 and |«/(&uf?„u)|<$ 1. (Landau 
damping and transit-time damping are considered unimpor- 
tant.) Since |«/Oj <? 1, we argue that/„ will be a function of 
the magnetic moment /j,=m„vi/(2B), which is a valid adia- 
batic invariant, and the total particle energy in the wave field 
e. Keeping in mind that the equilibrium distribution function 

is a kappa distribution of the form given by Eq. (4), 
choose 

we 

fa(fi,e) = C 1 + 
-(K   +1) 

I + 
2(e - nB0) -(«,,+11 

(Bl 

where C is a normalization constant. Using /u. 

= [mav] /(2B0)](1 -BJB0) = /^(l -BJBQ). e=e0+qa4>, 
where e0=tnn{v , +vn)/2 and <j> is the electrostatic potential, 
and expanding /„ in a Taylor series around P. = /JLQ and e 
= fi0 we obtain 

/„(M,e)=/oO- 
2(/c,|+i; 

+ 3-(eo-MoSo) 
K«m„(rM 

iA 

2/f(A J K1 + l 2/xpfio K» + 

2 /«0 

#Li 
i + 

"n^Xi! 
(e0 - /Aofi0) (B2) 

Here/n0=/„(/t=^0.e = e0) and the additional terms represent the perturbed distribution function /„. Using <psiE:/ku for the 
considered low frequency waves and returning to the velocity space variables, we find 

7, 2     i       J 2(f,i +1 1 "7^ 
K|| ]   -(-^/(KII^OT^II^I 6^ 

K + 1 I "II +1 K1 I 

«!    l+»5./(ifx 0ix)       "ii    (£,, 1 + u,f/(*„<?;„) 
r/ao.   <B3) 

and f,M(v"[ ,vv) is same as that given by Eq. (4). With this convenient form of fa, the necessary velocity integrations can be 
carried out more easily by using Eq. (A3), and it may be verified that nn, pM, and pai calculated from Eq. (B3) are identical 
to those given in Sec. IV from a more complete form of /„. 
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